Developmental Therapeutics for HCC, Colorectal Cancer, and Pancreatic Cancer

Manish Sharma, MD
Developmental Therapeutics Symposium
April 20, 2018
Disclosure Information
23rd Annual Developmental Therapeutics Symposium
Manish Sharma, MD

• I have the following financial relationships to disclose:
 Consultant for: Ipsen, Bayer, AbbVie, Taiho, Eisai

• I will discuss non-approved therapies and investigational uses of therapies in my presentation (these will be pointed out explicitly).
Overview

- Unresectable hepatocellular carcinoma
- Metastatic colorectal cancer
- Metastatic pancreatic cancer
Overview

- Unresectable hepatocellular carcinoma
- Metastatic colorectal cancer
- Metastatic pancreatic cancer
Current standard of care for systemic therapy of hepatocellular carcinoma (HCC)

• First line (previously untreated)
 • FDA approved: sorafenib
 • Not yet FDA-approved
 • lenvatinib non-inferior to sorafenib
 • nivolumab vs. sorafenib results expected in 2019

• Second line (previously treated with sorafenib)
 • FDA-approved (2017): regorafenib, nivolumab
 • Not yet FDA-approved
 • cabozantinib superior to placebo
 • ramucirumab superior to placebo for AFP>400 ng/mL
Checkmate 040 study: Nivolumab in advanced HCC

<table>
<thead>
<tr>
<th></th>
<th>Without viral hepatitis</th>
<th>HCV infected</th>
<th>HBV infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose escalation (n=48) 3+3 design</td>
<td>n=6</td>
<td>n=9</td>
<td>n=10</td>
</tr>
<tr>
<td>0.1 mg/kg (n=1)</td>
<td>0.3 mg/kg (n=3)</td>
<td>1.0 mg/kg (n=3)</td>
<td>3.0 mg/kg (n=3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dose expansion (n=214) 3 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorafenib untreated or intolerant (n=56)</td>
</tr>
<tr>
<td>Sorafenib progressor (n=57)</td>
</tr>
<tr>
<td>HCV infected (n=50)</td>
</tr>
<tr>
<td>HBV infected (n=51)</td>
</tr>
</tbody>
</table>

El-Khoueiry et al. Lancet Oncology 2017
A significant minority of HCC patients have responses to PD-1 blockade

El-Khoueiry et al. Lancet Oncology 2017
Responses to PD-1 blockade are durable in HCC patients

El-Khoueiry et al. Lancet Oncology 2017
Current trials for HCC previously untreated with systemic therapy

- Phase 1: SBRT followed by nivolumab or nivolumab/ipilimumab (investigator-initiated)
- Phase 3: Pexa-vec (intratumoral injection of attenuated vaccinia virus) + sorafenib vs. sorafenib
- Phase 3: atezolizumab + bevacizumab vs. sorafenib
Current trials for HCC previously treated with systemic therapy

- Phase 1: SBRT followed by nivolumab or nivolumab/ipilimumab (investigator-initiated)
- Phase 1b/2: PDR001 (anti-PD1) ± INC280 (cMET inhibitor)
- Phase 1: INCB024360 (IDO1 inhibitor) + pembrolizumab (expansion cohort in HCC)
Phase I study of stereotactic body radiotherapy (SBRT) followed by nivolumab or ipilimumab with nivolumab in unresectable hepatocellular carcinoma

Co-PIs: Manish Sharma, MD and Stanley Liauw, MD

Nivolumab 240 mg IV q2weeks

N = 50 (25 per arm)

3 sites:
UChicago Medicine
Medical College of Wisconsin/Froedtert
Roswell Park Cancer institute

Biopsies and blood before/after SBRT for correlative studies

Nivolumab 240 mg IV q2weeks + Ipilimumab 1 mg/kg q6weeks
Phase I study of stereotactic body radiotherapy (SBRT) followed by nivolumab or ipilimumab with nivolumab in unresectable hepatocellular carcinoma

Patient 2: cholangiolocellular carcinoma
Phase I study of stereotactic body radiotherapy (SBRT) followed by nivolumab or ipilimumab with nivolumab in unresectable hepatocellular carcinoma

Patient 3
Baseline

After SBRT and 4 cycles of nivolumab + ipilimumab
PHOCUS: Sorafenib ± Pexa-Vec in Advanced HCC

- Multicenter, open-label, randomized phase III trial in Australia, New Zealand, South Korea, Taiwan, Thailand, and United States

Wk 6

Pts with advanced HCC (BCLC B or C, C-P A, ECOG PS 0-1), ≥ 1 measurable/injectable tumor, and no prior systemic therapy (planned N = 600)

Sorafenib 400 mg PO BID

Pexastimogene Devacirepvec* Sorafenib 400 mg PO BID

*Dosed intratumorally on Day 1, Wk 2, and Wk 4.

All pts treated until PD or unacceptable toxicity

- Primary endpoint: OS
- Secondary endpoints: TTP, PFS, ORR, DCR, safety, TSP, DOR, TIR

PHOCUS: Sorafenib ± Peva-Vec in Advanced HCC
IMbrave150 (YO40245) Phase III atezolizumab + bevacizumab vs sorafenib in metastatic HCC: study design

Patient Population:
- 1L unresectable or metastatic HCC
- Measurable disease
- ECOG 0-1
- Child-Pugh A
- Varices treated per local SOC prior to enrollment

Randomization:
- Atezolizumab 1200 mg q3w + Bevacizumab 15 mg/kg q3w
- Sorafenib 400mg BID
- n=480

Treatment:
- Treat until loss of clinical benefit or unacceptable tox

Survival Follow-up

Stratification:
- Region (Asia excluding Japan / RoW)
- Macro-vascular invasion (MVI) and/or extrahepatic spread (EHS) (Presence / Absence)
- Baseline AFP (<400 / ≥400 ng/ml)
- ECOG (0 / 1)

Open label
- No cross-over allowed
- Treatment beyond progression, both arms
- Tumor assessments q6w
Overview

- Unresectable hepatocellular carcinoma
- Metastatic colorectal cancer
- Metastatic pancreatic cancer
Nivolumab in MMR deficient/MSI-H mCRC

Best Reduction in Target Lesion: All Patients

- 60% of patients had a reduction in tumor burden from baseline with nivolumab monotherapy

*Confirmed response per BICR assessment; □ % Change truncated to 100. † Patient from Group A with 0% best reduction in target lesion

Group A: patients received ≥3 prior chemotherapies including a fluoropyrimidine, oxaliplatin, and irinotecan
Group B: patients did not receive prior treatment with all 3 of these chemotherapies (fluoropyrimidine, oxaliplatin and irinotecan)

*BIKR data with a median follow-up of 21 months (range: 17-40).
Nivolumab + ipilimumab in MMR deficient/MSI-H mCRC

Best Reduction in Target Lesions

Nivolumab + ipilimumab

- 78% of patients had a reduction in tumor burden from baseline with combination therapy

Evaluable patients per investigator assessment.
What about immunotherapy for MMR proficient/MSS mCRC?

- Monotherapy with PD-1 blockade has essentially no response rate
- Combination immunotherapy approaches are being investigated
- MEKi + PD-1/PD-L1 blockade is the most promising at this point
PD-L1 and MEK Inhibition: A Rational Combination

- MEK inhibition alone can result in intratumoral T-cell accumulation and MHC I upregulation, and synergizes with an anti-PDL1 agent to promote durable tumor regression\(^1\)

- To examine the possible benefits of MEK inhibition with an anti-PDL1 agent, we evaluated cobimetinib + atezolizumab in patients with advanced solid tumors

MHC, major histocompatibility complex; ND, no drug (vehicle alone).
CT26 (KRASmt) CRC models. 1. Ebert et al. *Immunity* 2016.
Cobimetinib (MEKi) + atezolizumab in MMR proficient/MSS mCRC

Best Overall Response

<table>
<thead>
<tr>
<th>BOR (n = 84)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>7 (8%)</td>
</tr>
<tr>
<td>CR</td>
<td>0</td>
</tr>
<tr>
<td>PR</td>
<td>7 (8%)</td>
</tr>
<tr>
<td>SD</td>
<td>19 (23%)</td>
</tr>
<tr>
<td>DCR</td>
<td>26 (31%)</td>
</tr>
<tr>
<td>PD</td>
<td>51 (61%)</td>
</tr>
</tbody>
</table>

- 7 patients (8% [95% CI: 3, 16]) experienced PR (confirmed per RECIST v1.1)
 - 4 patients had MSS and 1 patient had MSI-low mCRC; the remaining 2 had unknown MSI status
- The DCR was 31% (DCR defined as PR + SD ≥ 6 weeks)

BOR, best overall response; DCR, disease control rate; RECIST v1.1, Response Evaluation Criteria In Solid Tumors version 1.1; SLD, sum of longest diameters.
Data cutoff: September 4, 2017. Cobimetinib dose and schedule varied based on cohort and phase of the study.
* 7 patients (8%) had missing or unevaluable BOR. † Based on combined local or centralized testing results. ‡ Unlabeled bars represent patients with unknown MSI status.

Presented at 2018 Gastrointestinal Cancers Symposium | #GI18
Presented by: Bendell J, et al. Atezolizumab + cobimetinib in mCRC
Slides are the property of the author. Permission required for reuse.
KEYNOTE-651: A phase 1b trial in MMR proficient/MSS mCRC

- Cohort A: Pembrolizumab + binimetinib (MEKi) in patients previously treated with fluoropyrimidine, irinotecan, and oxaliplatin
- Cohort B: Pembrolizumab + mFOLFOX7 in previously untreated patients
- Cohort C: Pembrolizumab + mFOLFOX7 + binimetinib in previously untreated patients
- Cohort D: Pembrolizumab + FOLFIRI in patients previously treated with one line of a fluoropyrimidine plus oxaliplatin-based regimen
- Cohort E: Pembrolizumab + FOLFIRI + binimetinib in patients previously treated with one line of a fluoropyrimidine plus oxaliplatin-based regimen
KEYNOTE-651: A phase 1b trial in MMR proficient/MSS mCRC

Cohort A
Pembrolizumab + Binimetinib
(Participants previously treated with fluoropyrimidine, irinotecan, and oxaliplatin)

Part 1
N=3-28
Preliminary RP2D

Dose Finding

Part 2
N=16
Cohort A

Dose Confirmation

Cohort B
Pembrolizumab + mFOLFOX7
(Previously untreated participants)

Preliminary RP2D

Cohort C
Pembrolizumab + mFOLFOX7 + Binimetinib
(Previously untreated participants)

Preliminary RP2D

Cohort D
Pembrolizumab + FOLFIRI
(Previously untreated participants)

Preliminary RP2D

Cohort E
Pembrolizumab + FOLFIRI + Binimetinib
(Previously untreated participants)

Preliminary RP2D
Overview

- Unresectable hepatocellular carcinoma
- Metastatic colorectal cancer
- Metastatic pancreatic cancer
BRCA mutations in pancreatic cancer

- Carriers of deleterious germline mutations of BRCA1 and BRCA2 have increased risk of developing pancreatic cancer

- The prevalence of germline BRCA mutations is:
 - Higher in select populations (e.g. Ashkenazi Jewish descent) and in patients with family history of pancreatic cancer

- Patients with germline BRCA mutations have defects in DNA repair mechanisms (homologous recombination)
 - BRCA defective tumors are intrinsically sensitive to platinum-based chemotherapy and to PARP inhibitors (olaparib, veliparib)
POLO: A phase III, randomized, double-blind, placebo-controlled multicenter study of maintenance olaparib monotherapy in patients with gBRCA mutated metastatic pancreatic cancer whose disease has not progressed on first-line platinum based chemotherapy

Primary endpoint:
- PFS

N = 145 patients

Eligibility:
- Metastatic PC
- ≥16 weeks of front-line platinum based chemo
- No disease progression

Screen for germline BRCA mutation while on chemo

Randomize 3:2

- **Olaparib**
 - 300 mg PO BID
 - Primary endpoint: PFS
- Placebo

PI: Hedy Kindler, MD
TNF-Related Apoptosis Inducing Ligand (TRAIL)

Amarante-Mendes GP, Griffith TS. Pharmacol Ther. 2015
Abstract DDT01-03: ABBV-621: A best-in-class TRAIL-receptor agonist fusion protein that enhances optimal clustering for the treatment of solid and hematologic tumors

Susan E. Morgan-Lappe

DOI: 10.1158/1538-7445.AM2017-DDT01-03 Published July 2017

Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC
An Open Label Phase I, First-in-Human Study of TRAIL Receptor Agonist ABBV-621 in Subjects with Previously-Treated Solid Tumors and Hematologic Malignancies

PI: Mark Ratain, MD

- IV, weekly dosing, dose-ranging
- patients with metastatic pancreatic cancer and KRAS mutated mCRC
What about immunotherapy for metastatic pancreatic cancer?

- Monotherapy with PD-1 blockade (unless MMR deficient/MSI-H) has essentially no response rate
- Combination immunotherapy approaches are being investigated
- Dual blockade of CSF-1R and PD-1 is most promising at this point
First-in-Human Phase 1 Dose Escalation and Expansion of a Novel Combination, Anti–CSF-1 Receptor (cabiralizumab) Plus Anti–PD-1 (nivolumab), in Patients With Advanced Solid Tumors

1UCLA Medical Center, Los Angeles, CA; 2The University of Texas MD Anderson Cancer Center, Houston, TX; 3University of Chicago Medical Center, Chicago, IL; 4UC Davis Cancer Center, Sacramento, CA; 5University of Washington, Seattle Cancer Center, Seattle, WA; 6Medical University of South Carolina, Charleston, SC; 7Sidney Kimmel Cancer Center, Jefferson University, Philadelphia, PA; 8Rush University Medical Center, Chicago, IL; 9Honor Health Research Institute, Scottsdale, AZ; 10South Texas Accelerated Research Therapeutics, San Antonio, TX; 11Dana-Farber Cancer Institute, Boston, MA; 12Barbara Ann Karmanos Cancer Institute, Detroit, MI; 13FivePrime Therapeutics, South San Francisco, CA; 14Bristol-Myers Squibb, Princeton, NJ; 15University of Pittsburgh Cancer Institute, Pittsburgh, PA
Rationale for Cabiralizumab in Combination With Nivolumab

- TAMs inhibit antitumor T-cell activity in the tumor microenvironment\(^1\,\,^2\)
 - In pancreatic and other cancers, high levels of TAMs are associated with poor prognosis\(^3\,\,^5\)
 - Signaling through the CSF-1 receptor promotes the maintenance and function of TAMs\(^1\,\,^2\)
- Cabiralizumab is a humanized IgG4 mAb that blocks CSF-1R\(^6\) and depletes TAMs
d- Preclinical data suggest that CSF-1R inhibition synergizes with PD-1 blockade to enhance antitumor activity\(^7\)

CSF-1 = colony stimulating factor 1; TAM = tumor-associated macrophage; IgG = immunoglobulin G; mAb = monoclonal antibody; PD-1 = programmed death-1

Oral abstract O42, SITC 2017 Annual Meeting
Deep and Durable Responses Observed in Patients With Pancreatic Cancer

Best change in tumor burden over time in efficacy-evaluable patients treated with cabiralizumab 4 mg/kg + nivolumab 3 mg/kg (n = 31)*

- In this heavily pretreated population, durable clinical benefit was observed in 5 patients (16%)
 - Confirmed ORR = 10% (Updated confirmed ORR = 13%)
 - Duration of treatment for responders = 275+, 168+, 258, and 247+ days
- All 4 confirmed responses were observed in patients with MSS disease, who historically have not shown benefit with anti–PD-1/L1 therapy¹,²
- Responses were accompanied by steep declines in levels of the pancreatic tumor marker CA19-9 over baseline

C4-MOSART: Multi-Organ Site Ablative RT

Co-PIs: Jason Luke, MD and Steve Chmura, MD, PhD

Study Design Schema

- Advanced/metastatic cancer
- no active immunosuppression
- 1-4 metastases that can be safely treated with SBRT

TREATMENT

SBRT to 1-4 metastases in combination with
1. Urelumab + Nivolumab
 OR
2. Cabiralizumab + Nivolumab

FOLLOW UP

- Evaluate toxicity
- Repeat CT scan 12 weeks after SBRT
- Recollect biospecimens
- Repeat biopsy of treated lesion
- Continue immunotherapy until toxicity/progression

choice of regimen is discretion of co-PIs
Acknowledgments

GI Oncology
Daniel Catenacci, MD
Hedy Kindler, MD
Chih-Yi (Andy) Liao, MD
Stanley Liauw, MD
Steven Maron, MD
Blase Polite, MD

Developmental Therapeutics
Steven Chmura, MD PhD
Jason Luke, MD
Mark Ratain, MD

Personalized Cancer Care Consortium
Walter Stadler, MD
Mary Sherrell, MA